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Abstract

Acquiring the ability to effectively modify and control the behavior of fluid
flow continues to be a pervasive and important aspiration in many areas of
engineering. The present research continues to advance the technology of var-
ious schemes that employ the use of wall-mounted actuators for active flow
control. Any design in which fluid-flow characteristics are important (aircraft,
turbomachinery, ships, etc.) stands to benefit from this new technology of ma-
nipulating the flow behavior by time dependent forcing. Research completed
to date promises reduced cost, complexity, and weight along with significant
improvement in design performance. A summary of this research indicates
however, that the details of the disturbance excitation process have still not
been completely explored, and hence an understanding of the important pa-
rameters in actuator design is currently unavailable to the engineer. Only with
this knowledge will it be possible to design devices for specific tasks that are
efficient and effective in their performance.

Our programme of research examines boundary value periodic point source
excitations of laminar boundary layers, and considers how some more complex
actuators might be modeled numerically. The study is carried out in three
parts: i. linear theory, ii. wind tunnel measurements, iii. full Navier-Stokes
modeling.
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1 Introduction

Acquiring the ability to effectively modify and control the behavior of fluid flow
continues to be a pervasive and important aspiration in maﬁy areas of mechanical and
aerospace engineering. The present research continues to advance the technology of
various schemes that employ the use of wall-mounted actuators for active flow control.
Potential applications include the use of periodic injection of momentum (blowing
and suction with or without the addition of mass) to delay flow separation from
airfoil lifting surfaces, application to diffusers for thrust augmentation and vectoring
in high-performance military aircraft, and alleviating the effects of dynamic stall in
helicopter rotors that limit flight speeds and maneuverability. Any design in which
fluid-flow characteristics are important (aircraft, turbomachinery, ships, rockets, etc.)
stands to benefit from this new technology of manipulating the flow behavior by time
dependent forcing. Research completed to date promises reduced cost, complexity,
and weight along with significant improvement in design performance. A summary of
this research indicates however, that the details of the disturbance excitation process
have still not been completely explored, and hence an understanding of the important
parameters in actuator design is currently unavailable to the engineer. Only with this
knowledge will it be possible to design devices for specific tasks that are efficient and
effective in their performance.

Our programme of research examines boundary value periodic point source exci-
tations of laminar boundary layers, and considers how some more complex actuators

might be modeled numerically. The study is carried out in three parts.

1. Linear theory is used to examine a wide range of boundary layers having dif-
ferent pressure gradients and Reynolds numbers subjected to various periodic
point boundary values. The linear model used is relatively cheap and many
different flow situations can be explored. The method of analysis is amenable

to further simplification where only the asymptotic solutions from various exci-




tations are found from the source receptivities. The receptivities are evaluated

for a range of different flow parameters.

2. Wind tunnel measurements have been carried out to validate the linear code so
that it can be used to study the responses to excitations over a wide range of
parameters. The experimental work is time consuming and it is only sensible to
use it to show that the simpler numerical codes give reliable predictions. Here
the validation has been made for the case of zero pressure-gradient boundary
layers and at only one Reynolds number. It is difficult in the experiment to
modify the setup to change the Reynolds numbers significantly and major effort
is required to introduce a pressure gradient. There was no reason to suppose
that the linear theory, once validated on the zero pressure gradient flow at
one Reynolds number, would not be capable of describing the disturbance flow
fields in a wide range of different mean flows. The behavior of the flows to
large amplitude excitations, that cannot be predicted by a linear model can, of

course, also be explored experimentally.

3. Full Navier-Stokes modeling can provide solutions to both linear and nonlinear
excitations, but the cost is high. DNS calculations have been carried out to
validate the linear code. An immersed boundary technique is introduced for
the simulation of flow control actuators which can not be modeled by boundary

values alone.

1.1 Theoretical Investigations

Actuators were modeled by various types of boundary values imposed at the wall.
Often point excitations have been used in applications and the linear analysis used
here studies the resulting flow fields created. The solutions from a point source can be
extended to cover other more complex types of excitation. The most popular actuators
are oscillating jets aligned in various directions to the boundary wall. Periodic bumps

on the surface have also been used and this form of excitation can be modeled by the




linear theory provided that the bump is sufficiently shallow. Other forms of exciters,
such as flaps, that have been used in experiments cannot be represented properly by
boundary values and are outside the scope of this theory. In the following analysis the
usual Cartesian axes z, y, and z are used in the direction of the free-stream, normal
to the surface of the plate and in the span wise directions. Mean boundary layer
velocities U, V, and W and perturbations u, v, and w are used with the perturbation

vorticity components (;, (y, and (,.

1.1.1 Boundary Conditions

It is convenient to apply the velocity boundary conditions on the plane y = 0. For
the jets this is straightforward, but the shallow bump requires some expansion of the
solution close to the boundary.

Unsteady Jets A normal jet at a point can be modeled by makifxg the normal

velocity component zero everywhere on the wall except at the excitation point.

v(z,0) = we “drdz (1)
u(z,0) = 0 (2)

An angled jet may be represented by

v(z,0) = wgcos(f)e ™ dzdz (3)
u(z,0) = wvpsin(d)e ™ dzdz (4)

where vg is the velocity along the jet pipe aligned at 6 to the boundary wall. A similar
expression can be written down for a jet aligned in the spanwise direction

Shallow Bumps The required boundary values on the wall can be found by
expansion about the wall. The bump geometry is defined by h(z, z), which is assumed

to be small and smooth. For shallow bumps therefore we obtain

u(z,0) = —%% h(z, z)e” ' + O(h?) (5)

v(z,0) = —iwh(z,2)e”™" + O(h?) (6)




where h(z,z) can be treated as a point excitation ho dz dz. Far from the plate the

perturbations decay exponentially in all cases.

1.1.2 Equations of Motion

The linearization of the boundary conditions is one of the approximations used. In
this analysis it has also been assumed that the perturbation amplitudes of interest
are small enough to allow the disturbances equations to be linearized throughout the
flow field. This approach has been established as a good approximation for much
of the region of wave growth leading to turbulence, as it is found that only in the
last stages of growth do the non-linear terms become important. This approximation
seems, therefore, to be especially suitable for the excitation phase of the transition
process. Solutions of the linearized perturbation equations of motion subjected to the
boundary conditions (1) through (6) are sought. These equations are of partial differ-
ential form and their complete solution is likely to be time consuming. In this work
solutions close to the source are of most interest and the further approximation is
made that the mean flow can be treated as a parallel flow independent of stream wise
location. This parallel flow approximation pervades almost all linear stability theory,
where it has been found to provide reasonably accurate predictions of the behavior
of unstable waves. Although there are schemes for correcting the eigensolutions from
the Orr-Sommerfeld equation to account for the slow growth of the boundary layer,
these corrections are small and certainly do not alter any understanding of the pro-
cess of wave growth. Initially at least, the influence of boundary layer growth with
downstream distance will be ignored, although at a later stage appropriate correc-
tions could be introduced. With the introduction of these two main approximations,
namely linearization and local parallel flow, the perturbation equations separate in
the space co-ordinates, enabling Fourier transforms to be taken in the stream wise
and spanwise directions. The governing equations are then the Orr-Sommerfeld and

Squire equations defining the transform of the velocity perturbations and their deriva-




tives in the directions of the z, y, and z axes. It turned out to be more convenient
in this study to re-cast the problem into equations for the three orthogonal velocities
and the three vorticity components. The variables in transform space are denoted by

the caret symbol . We obtain the form

1 )
ﬁ‘(aa 57 W, y) = m / / U(CL‘, Y, Z)ez(ax+ﬂz—~wt) dzdz (7)

etc. for all other variables and their derivatives. The perturbation equations can be

reduced to two first order and two second order relationships

= iab -, (8)
¥ = —iod —ifw (9)
X sy .U 0
_ U _sr%Y 1
¢! = o+ IR — R (10)
Al A o oU
(, = Gp°+ zﬁvR—% (11)
where
p* = I'’+iaR (U - g) (12)
2 = o+ p (13)
Uso
= 1
n D (14)

and the Reynolds number is given by R = Usd*/v.

This is a sixth-order set of linear ordinary differential equations that can be solved
by any number of different schemes. Here it was found convenient to use a shooting
methotl that incorporated a simple way of eliminating the parasitic growth that arises
with these stiff high Reynolds number equations. The scheme is somewhat similar
to that developed by Dr Kaplan some 30 years ago. This form of integration seems

particularly suited to the current study involving wall boundary values.

1.1.3 Method of Solution

The equations have six independent solutions, three grow exponentially with the dis-

tance from the wall and three decay. The far field quiescent outer conditions requires




10

all disturbances to decay far from the boundary, forcing the coefficients multiplying
the growing solutions to be equated to zero. Then the three remaining roots can be
arranged as a single inviscid mode (A) and two viscous ones (B) and (C) as follows:

(A) asnp — o0

@ = e (15)
5 = ileT (16)
[0
W = ge—” (17)
and
éz:éyzézzo (18)
(B)
au = e ™ (19)
b = %e—"" (20)
b = 0 (21)
b = 9‘5(”" (22)
{, = iBe™ (23)
6 = —(S-p)em 24)
(€)
i =0 (25)
v o= 35—6"”" (26)
w o= e Pl (27)
é — (_@i) e~ Pn (28)
: P
G = —ioe™" (29)
(o= —Lem (30)
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Equations (8) through (11) were integrated by a 4th order Runge-Kutta scheme from
the outer boundary marching towards the wall boundary. There are six fundamental
solutions, but because of the outer boundary condition requiring all perturbations to
decay, three of the arbitrary constants can immediately be equated to zero. The three
remaining roots are evaluated by integration from the outer regions to the wall, where
the boundary values can be applied to determine the remaining constants multiplying
the individual roots. Unfortunately these three roots will inevitably exhibit parasitic
growth as each solution becomes contaminated by the unwanted component arising
from the stiffness of the equation set. At the end of each integration step all the so-
lution variables and their derivatives are defined. These can be combined together in
any convenient way to remove the parasitic growing solutions, providing new variables
for the next integration step. Here it turned out to be convenient to set two velocity
components to zero, leaving the remaining velocity component unspecified at this
stage. The same combination of roots was then applied to all variables and deriva-
tives needed to continue the integration. The various scaling factors used were also
stored. This process of stepwise integration and filtering was continued to the wall
where the remaining boundary condition was applied. If the choice of wavenumbers
was compatible with an eigenmode of the system the remaining velocity component
would then also be zero. An iteration scheme was set-up to vary the wavenumbers or
frequency parameter until all the velocity components became zero at the boundary.
The eigenfunction could then be readily reconstructed from the previously stored scal-
ing factors. In tests to ascertain the accuracy of the scheme comparisons were made
with values from a very accurate Compound Matrix integration scheme. Generally 8
figure agreement was found for the eigenvalues when sufficient integration steps were

employed.
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1.1.4 Boundary Value Problem

Appropriate boundary conditions defined in (1) through (6) together with the trans-
form relation (7) give the necessary boundary conditions in the variables used in the
equations (8) through (11) . It is much more appropriate to split the problem into
separate cases for the different wall boundary values. The solution to a general prob-
lem with multiple boundary values differing from zero can be re-constructed by an

appropriate linear combination of these solutions. The solution form then appears as

Q IB a:l,‘ Z2—W
Q= i [ [ OB ptorsrieet g (1)

where Q); represents any one of the integration variables or derivatives for the case

when the boundary value is applied on u. Similar expressions are used when the

boundary value is specified in terms of one of the other velocity components.

1.1.5 Evaluating the Integral

It is convenient first to focus on the somewhat simpler two-dimensional problem with

B set to zero. The integrals that have to be evaluated then take the form

QJ z(az—wt)
Qya,t) = 5- [ EL e da (32)

where (); represents any one of the integration variables or derivatives. The main
difficulty in evaluating the integral arises because the integrand will in general be
singular at eigenvalues of the system, but in the boundary layer situation there is
only likely to be one unstable mode. There are also branch cuts in the a-plane, but
these do not interfere with integration along the real axis. Difficulties associated
with the unbounded eigensolution can be eliminated by subtracting the singularity
from the integrand that occurs when o = o* and then treating the singular part
of the inversion analytically. The complete solutions is then the summation of the

numerically determined regular integral and the wavy part arising from the pole.
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Equation (32) then reduces to

: — _1_ Q'(CM, 77) _ Q‘(a*,ﬁ) ' i(az—wt)
et =5 | [ i00) (@—a)at,0da) ¢ de (3

This approach is especially useful as it separates out the near-field solution and

the far-field eigensolution. The appropriate eigensolutions for weakly non-parallel
flows can be computed without too much difficulty and used to replace this term. In
this way it should be possible to construct solutions that are valid over the whole of
the physical plane. The second term in the above equation provides the magnitude
of the response, or the receptivity, of the boundary layer to boundary perturbations.

The flow disturbances created by any three-dimensional source can be constructed
from a series of two-dimensional solutions obtained for different spanwise wavenum-
bers. The solution in physical space is then formed by taking the Fourier transform
in spanwise wavenumber. For each boundary value calculations of the 6 variables
were made covering a range of grid points over the three physical co-ordinates. These
may be plotted out in various ways to show particular features. It turns out that
experimental measurements of any other quantity than the stream wise velocity are

very difficult to make. Mostly, therefore, only the u component was stored.

1.2 Experimental Investigations

The experiments discussed here were carried out in the 3ft square low-turbulence
wind-tunnel at Queen Mary College. This tunnel is of conventional closed circuit
design with a contraction ratio of around 7:1. The settling chamber is fitted with
a honeycomb followed by four screens in order to provide a very low intensity of
turbulence at the entry to the working section of below 0.01% between 2Hz and
2kHz. Although the turbulence intensity increases downstream the level remains
acceptably low over the length of the centrally mounted flat plate. The experiments
measurements were made in the boundary layer that formed on the 10mm thick
aluminum plate. The 1.5 m long plate was fitted with a wooden leading edge of

elliptic form and trailing edge flaps that could be set to make the flow over the front
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700mm close to zero pressure gradient. Circular inset discs of 210 mm diameter could
be fitted into the plate containing the different exciter jets at 500 mm from the leading
edge.

The tunnel was fitted with a computer controlled three-dimensional hot-wire tra-
verse. The computer was set up to monitor the temperature, atmospheric pressure,
flow speed, the hot-wire signal and it also controlled the D/A that created the excita-
tion source signal, the A/D converters and filters and the tunnel speed. To improve
the ability to measure quite small fluctuations by the hot-wire data collection was
synchronized with the excitation. Ensemble averaging of the hot-wire signal over
long records effectively reduced the influence of noise and enabled measurements to
be made at amplitudes well below the background level of the wind tunnel. Because
of the long records required the data collection process could take many hours, or
even days. However, once set-up on the computer, the tunnel could be left to collect
data unattended overnight or sometimes over a weekend.

The periodic excitation was provided by a piston working in a cylinder driven
by an electro-mechanical vibrator. Measurement of the piston movement was by an
induction system capable of resolving 2 microns displacement. Various piston sizes
were used to cater for a range of mass flows. The output was coupled to the jets on
the insert disk by a flexible pipe of 100 mm. The exciter assembly was mounted off
the reverse side of the plate on tensioned wires to reduce the amount of vibration

transmitted to the plate.

1.3 Direct Numerical Simulations

The full three-dimensional incompressible Navier-Stokes equations are used to predict
the velocity fields produced by actuators of various types. The computations are made
using Direct Numerical Simulation where a discretized version of the Navier-Stokes
equations is solved using a computer. The code used in the present investigation was

originally written by Meitz and Fasel (2000), and has been appropriately modified
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for the present investigations to model flow control actuators of various shapes.

1.3.1 Governing Equations

The incompressible Navier-Stokes equations are given as

V-u = 0 (34)

a—u—i-u-Vu = F-—Vp+—-1——V2u (35)
Re

ot
These equations have been non-dimensionalized with the free-stream velocity, U,
and a reference length L

x v t*

z*
_- = - t= 36
tET o YET 0 T L)Us (36)
u* v* w*
u—f]; , U oo w i (37)

The global Reynolds number Re is defined as U, L/v. Taking the curl of the Navier-
Stokes equations eliminates the pressure term, and results in the vorticity transport
equation

ow 1

—_— . —_— . RN 2
5 +u-Vw VXxF+w Vu+Rve (38)

where the vorticity w is defined as

w=-Vxu (39)
or in Cartesian components
Wy = g—g — % (40)
Wy = —Z—Z - g—z (41)
o= o (42)

where u, v, and w are the velocity components in the stream wise (z), normal (y), and

spanwise (z) directions, respectively. Using the fact that both the velocity and the
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vorticity vectors are solenoidal, equation (38) yields three equations for the stream
wise (w,), normal (w,), and spanwise (w.) components of the vorticity

Ow, Oa Oc 1 _, :
__0a bc 1 4
% = oy 5 TR T (43)

Ow,  Oa Ob 1,
o = 5z o R T (44)
Ow, Oc 0b 1,
-(97———53—;+5?;+—R§sz+fz (45)

where fs, f,, and f, are the components of —V X F, and the nonlinear terms are

a=VW; — UWy + Vp Wz — UB Wy (46)
b=wwy — VW, —VpW; — VW;B (47)
C=UW, — WWg +UpW, + UW, B (48)

Equations (43) through (48) have been written in disturbance flow formulation, where

a total flow variable is split into a steady, two-dimensional base flow, and an unsteady

disturbance
ur(z,y,2,t) = up(z,y)+ulz,y,2,t) (49)
vp(z,y,2,t) = vg(z,y)+v(z,y,2t) (50)
wr(z,y,2,t) = w(z,y,21t) (51)
wer(T,y,2,t) = we(z,9y,2,1) (52)
wyr(z,y,2,t) = wy(z,9,2,1) (563)
wor(z,y,2,t) = wp(z,y)+w.(z,9,2,1) (54)

Using the definition of vorticity, equations (40) through (42), and the continuity

equation (34), one can obtain three equations for the velocity components

Ow; Ow
2 T z
VU= 5 T e (55)
O’w  O*w Ow, 0%
822 | 022 8z Oydz (56)
2 2 2
Pu  Ou _ Owy v (57)

92 T 52 52 910y
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The flow is assumed to be periodic in the spanwise (2) direction, and each variable is

expanded as a Fourier series. For example

K .
u(@,y,2,t) = Us(z,9,t) + 2 Us(z,9,t) cos(7e2)

k=1

2K

+ Z Uy (z,y,t) sin(vx2) (58)

k=K+1

K
wz (2,9, 2, 1) = Qeo(z,9,t) + Z Qo (2, y, 1) sin(ye2)

k=1
2K
+ Z sz ($7 Y, t) COS(’YICZ) (59)
k=K+1
where ok
: 1<k<K
Tk = (60)
—@ﬁ%ﬁﬁ . K+1<k<2K

Substituting the appropriate expansions into the vorticity transport equations (43),
(44), (45) and the velocity equations (55), (56), (57) yields the governing equations
in Fourier space, the vorticity transport equations

Oz O0A 1

at = -—-—a-y— - ’)’ka -+ EEV%QE)C - sz (61)
o0 0A 1
8:k = —8_;_ + v By + Eéviﬂyk + Fyk (62)
09, oC, 0B 1
e = "o Tay T Re et (63)
and the velocity equations
0
V2V = 1ok — o 64
kVk Yid Lxk o (64)
62Wk 2 aka 8Vk
9z NWWe = G- TG, (65)
82Uk 2 82Vk
- = Oy — —
8$2 fYkUk 7k yk 8$6y (66)
where the Laplacian operator is defined as
0? 02
Vfc:&—g'*'a—y'g-%% (67)
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In the present approach, the vorticity values at the wall are not computed from the
vorticity transport equations (61), (62), and (63). For consistency, they are instead

computed from the following equations

0% Qi

A2 "ok = — —nViVi (68)
Ox 0x0y
ow,
Q. = _8—135 + WUk (69)
o9,
_E);;ﬁ = Sk — ViVi (70)

The right hand side of equation (68) can be computed, and with inflow and outflow
boundary conditions specified, {24 can be determined. Because the values of w and
u are known at the wall, Q,; can be computed from equation (69). Finally, the right
hand side of equation (70) is known, and ,x can be computed by integrating from
the inflow.

The governing equations are solved using a fourth-order accurate compact differ-
ence scheme in space (see Lele (1992), Meitz and Fasel (2000)), with an explicit

fourth-order Runge-Kutta method for time advancement.

1.3.2 Modeling Flow Control Actuators using the Immersed Boundary
Method

Theoretical Aspects The immersed boundary method is a numerical method for
solving boundary-value and initial/boundary-value problems on irregular domains.
Irregular domains contain boundaries that do not conform “nicely” (e.g., rectangu-
lar boundaries in Cartesian coordinates ) to the coordinate system being used. The
method promises to do this more easily, generally, accurately and efficiently than has
been possible up to now using standard methods employing body-fitted or unstruc-
tured grids.

With regard to figure 1, one would typically like to solve a PDE defined on the
open region Qt with boundary conditions on 9, the outer boundary, and 0€);,

the immersed boundary. The solution in the region Q~ (which is the complement
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of O+ U 89, U 89;) may or may not be of interest. For example, if one would like
to simulate the interaction of a thin, elastic membrane submerged in and filled with
a fluid, then the governing equations both inside (in Q~) and outside (in QF) of
the membrane would have to be solved. Upon approaching the limit of an infinitely
rigid shell, however, only the solution outside of the membrane would likely be of
importance. In either case, the immersed boundary 99, represents a singularity if one
considers that, say the governing partial differential field equations, apply throughout
the entire domain enclosed by 8€,; field variables and/or their derivatives will be
discontinuous across the immersed boundary.

In the immersed boundary method, a forcing term F(x,t) is added to the right
hand side of the momentum equation (35) to represent this singularity. The volume
force F(x,1) is to be determined such that the no-slip condition can be enforced on a
given body defined by its bounding surface S. This volume force will cause the fluid

velocity to assume the local surface-velocity at each point on the body. Let
x = X(r,s,t) (71)

be a Lagrangian, parametric representation of the body surface S. We can define

another function f(r, s,t) such that
F(x,t) = /Sf(r, s,t) 6(x — X(r,s,t)) drds (72)

where 8(x) is the Dirac é-function. The field F given by equation (72) is not an
ordinary function, but a distribution which is zero everywhere except on the body

surface. Integrating both sides of equation (72) over an arbitrary region R

/x L Fxt) dx= /X oo e phst) drds (73)

since

/ §(x — X(r,s,t)) dx =
x € R

1 X(r,s,t) € R

{ 0 otherwise (74)
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which shows that equation (72) makes sense.

The formulation represented by equation (72) is such that the surface S appears
as a linear superposition of the correct forces. Another interesting feature of this
formulation is that two distinct regions can be identified for closed surfaces: the
space inside S, and the space outside S. The flow produced inside a closed surface
will not be of any immediate interest, and is simply a by-product of the method.
Numerical Implementation Denote by f(x,,t) and elemental volume force at a
point x; on the surface S. The task of determining f (xs,1) still remains to be dis-

cussed. In their paper, Goldstein et. al. (1993) suggest a type of feedback loop
t ~ o~
f(x,,1) = @ / u(xs, ) df + Bu(xs, ) (75)
0

where a and 8 are negative constants. One can see how the force defined in equa-
tion (75) will eventually bring the flow to rest at the point x;. Assuming u to be,
say, positive along one of the Cartesian axes, the force will act in the opposite direc-
tion, causing the fluid particle to slow down and eventually stop, assuming that the
flow has a steady-state solution. At this time, u = 0, and f no longer changes with
time. For unsteady flows, one can understand the behavior of the formulation given
by equation (75) in the following heuristic way. With an approximate form of the

momentum equation taken as

du(x,t)
Pt

one can see that the behavior is approximately that of a damped harmonic oscillator

~x, )= f (s, 8) d + Bu(xs, 1) (76)

with mass &~ pdx?, spring constant «, and viscous damping S.

In earlier studies, Viecelli (Viecelli (1969), Viecelli (1971)) introduces an iterative
method to model immersed moving surfaces. Using the MAC, or Marker and Cell,
method for solving the time-dependent, incompressible flow equations, the pressure
in boundary cells, i.e. those near a moving wall, are determined by the following

relaxation equation (Viecelli’s equation (9), Viecelli (1971))

Pt =P, - é(;z ([(V;’“)i — V,(r, t)] ' n)k,l (77)
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where Vg“ is the computed velocity, V(r, t) is the required velocity, n is a unit vector
normal to the surface, ¢ is the mesh width, and A7 is a relaxation parameter. In
this formulation, the pressure is adjusted within the iteration loop until convergence
is achieved, at which point the velocities obtained match those prescribed, within a
given tolerance.

The present approach to determining f(x,,t) is a mixture of the two methods

described above. Equation (72) is discretized as
F(x,t) =) h,(t)é(x — x,(t)) (78)

where x,(t) is one member of the finite set of points selected as a discrete representa-
tion of the no-slip surface S. The value of h,(t) is determined iteratively during the

course of the calculation
B (") = hi(t") — B[V (t™) = Vi (t™))] (79)

where V,(t"!) is the velocity computed at point x,, Vis(t"*") is the required velocity
at this same point, and f is a relaxation factor. The computed velocity of points not
coinciding with the computational grid were obtained by interpolation using a second-

order polynomial. The delta function was approximated by a Gaussian function

S~ x,(1) = ——exp [— ((3&‘7—@) + (an_% N (__7'@))]
2040 z Y ’ (80)

Additional information regarding our implementation of the immersed boundary tech-

nique can be found in von Terzi et. al (2001).

2 Validation

It is of course necessary to validate the computational scheme before using it in anger
to explore the effects of Reynolds number, Pressure gradient, excitation frequency
etc. This can be accomplished by comparison with full DNS as well as by comparison

with experimental measurements. First, we will discuss the experimental validation.
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2.1 Validation of Theoretical Approach
2.1.1 The normal Jet

Although experiments were carried out at a number of different frequencies we will
only report the measurements obtained at the frequency of 96 Hz as the other values
showed very similar results. The level of excitation was adjusted and the resulting per-
turbations were measured through the boundary layer at some downstream station.
By noting how the perturbation divided by the excitation behaved it was possible to
determine a level that produced linear response. A periodic jet velocity of amplitude
0.1 m/s of the free-stream, averaged across a 2mm normal jet, was found to be below
this threshold and was used with a mean tunnel speed of 10 m/s. The flow along the
center-line of the wedge- shaped zone containing the stream wise perturbations was
mapped out. Figure 2.2.1.1 shows the in-phase and out-of-phase components plotted
on the z—y plane. The initial zone close to the jet is dominated by the near field, but
by about 100mm downstream of the source the disturbance pattern has formed into
a progressing wave-train. On these plots, and all those in section 2.1, the contours
are drawn at levels equal to the square root of ten, with the level at the decades
shown in thick lines. The lowest level contour is drawn at an amplitude of 0.001%
of the free-stream value. The figure also shows the predicted oscillations obtained by
the linear theory for the same conditions that were used in the experiment. There
seems little purpose in showing vast numbers of very similar plots obtained at differ-
ent frequencies as they all compared very favorably with predictions. The spanwise
development is shown on figure 2.2.1.2 for traverses on the z-y plane taken at 100mm
from the source. The upper plots contain the theory whilst the lower ones show the
predictions for the in-phase and modulus. In this comparison an arbitrary phase was
included in the theoretical calculations because, as can be seen in the previous plot

the phases do not match very closely.
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2.1.2 Inclined Jets

An insert disk was fabricated with a set of obliquely inclined jet exit holes. They were
inclined at 30 degrees to the boundary pointing upstrearh, downstream and in the
spanwise direction. The jet pipes were kept at 2mm diameter, but this meant that
the elliptic exit hole was 2mm by 4mm and hence had double the area of the circular
jet hole. The inactive holes were blocked with tape. A series of traverses similar to
those obtained for the normal jet were made with the jets pointing upstream and
downstream. The resulting plots were only slightly different from those shown above
for normal jet orientations because the receptivity to the v boundary value is very
small compared with that created by a v excitation as will be shown in the section
5. The upstream/downstream pictures showed negligible differences to that of the
normal jet. The spanwise traverses indicated that the forward jet created a slightly
larger perturbation than the downstream one. This is somewhat counter intuitive,
but this behavior was confirmed by the linear theory. It does not seem worthwhile
showing all the plots created as they show little that is new or unexpected. It should
be noted that although the normal component of the jet was halved by the angle
of inclination the area of the jet was increased by two and the resultant excitation
in terms of mass flux remained unchanged. Jets inclined along the span were also
investigated. Again the effect of the boundary value is weak and the result on the
stream wise velocity component was negligible. The excitation from the spanwise
component is an odd function of the z coordinate and can be expected to have zero
influence on the flow along the center-line which is controlled solely by the normal
component of the jet. This was confirmed by experimental measurement. Again
it does not seem worth showing a measurement indistinguishable from that of the
normal jet. The transverse pictures do show some weak asymmetry and this is shown

together with predictions on figure 2.2.2.
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2.1.3 Jet Size

A series of normal jets of lmm, 2mm and 4mm diameter were investigated. The mass
flow was reduced from the levels used previously to make sure that the higher jet
speed arising in the small jet case did not cause any unwanted nonlinear behavior.
The mass flows were slightly different from one another, but the measurements have
been linearly scaled to compensate for these small differences. Figure 2.2.3 shows
three contour plots of the stream wise disturbance fluctuation on the z-y plane at
100mm downstream of the source. Because of the lower excitation level an extra
contour at 0.000316% is included. The patterns for the two smallest jets are virtually
identical to one another, but that of the wider 4mm jet is different. The wider jet
orifice will naturally create a slight spread in pattern, but the observed differences

confirm that the mechanics of generation depend on the exit mass flow.

2.2 Validating the Immersed Boundary Method

Several tests were performed to validate the immersed boundary method as a suitable
tool for actuator simulations. The first test was to see how well the method could
produce a zero pressure-gradient, flat-plate boundary layer when a flat plate was im-
mersed in the computational domain. The setup is shown in figure 2. The flat plate
is located well inside the true, body-fitted, computational domain, and is simulated
as an immersed boundary. That is, we imagine a the lower wall of a standard rectan-
gular cartesian domain being moved upward, parallel to itself, into the computational
domain. The solution at points below the immersed wall is still computed, but does
not influence the solution above the immersed wall.

As a first step, the undisturbed base flow is computed. Figures 3 through 6 com-
pare the steady profiles obtained using a standard body-fitted code (solid line), and
those obtained from the immersed boundary simulation (symbols). A small deviation
near the immersed wall can be seen in the zoom-in plots, but overall, excellent agree-

ment with the body-fitted results is achieved indicating that the immersed boundary
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technique is able to capture mean-flow characteristics quite well.

Flows in which near wall accuracy is important present a much tougher test case
for the numerical method. A good example of the is the simulation of Tollmien-
Schlichting waves which are produced when disturbances are introduced into the
flat plate boundary layer. If the frequency of the disturbance is selected properly,
the T-S waves will be unstable with respect to the underlying base flow, and will
amplify as they are convected downstream. Obtaining the correct amplification rates
is important if flow control simulations are to be carried out with the code. Moreover,
many body-fitted codes have difficulties predicting the correct amplification rates.

Growth rates computed over the immersed flat plate are shown in figure 7, where
the maximum in the u-disturbance profile is followed. For comparison, the results
obtained using the underlying body-fitted code, and the results of standard linear
stability theory (using the Orr-Sommerfeld equation) are plotted as well. The results
obtained using the immersed boundary method are shown for several different tem-
poral discretizations (non-dimensiohalized to form the CFL, or Courant-Friedrichs-
Lewey number). A smaller time step than that needed for numerical stability is seen
to be required in order to obtain correct amplification rates. The reason for this is the
approximate nature of the feed-back mechanism for determining the volume forces
discussed above. As the CFL number is reduced, however, the solution appears to
converge, and the results obtained are close to those predicted by a standard DNS.
The corresponding disturbance velocity distributions (eigenfunctions, when compar-
ing with Orr-Sommerfeld theory) are shown in figures 8 through 11. Good agreement

is found.

3 Predictions based on the Linear Model

In the previous section some comparisons between measurement and prediction based
on the linear model are shown of measured disturbances downstream of periodic point

sources. These pictures show a remarkably consistent correlation and suggest that
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the theory can indeed be used to predict the disturbance field. There seems no reason
to suppose that the theoretical model cannot be extended to cover boundary layers
with pressure gradients and jets of different frequencies. The numerical scheme has
been used to explore the downstream disturbances created by various boundary value
excitations under a wide range of flow parameters. Instead of using dimensions that
naturally enable comparisons with experimental data to be made as was done in the
sections discussing validation it is more convenient now to employ non-dimensional
units. All lengths are scaled by the displacement thickness at the source, and all

velocities by the free-stream.

3.1 Responses to Boundai'y Conditions

Under one flow condition, zero pressure gradient F-number of 100 x 10~® and Reynolds
number 1000, the disturbance fields has been computed for the three velocity bound-
ary values. In each calculation all the three velocity components as well as the three
orthogonal fluctuating vorticities have been stored and are plotted on figure sets
3.1.1(i - vi), 3.1.2(i - vi) and 3.1.3(i - vi) respectively. All excitations are of unit
magnitude over a source region equal to the square of the displacement thickness. As
in the previous sets of contours the levels are powers of the square root of 10, with the
alternate decade contours set in thicker lines. All the perturbations are normalized by
the free-stream velocity, and the vorticities also by the displacement thickness. Each
set of figures contains three sections of the flow field for that particular excitation
and disturbance quantity. When the solution is an even function of the spanwise
dimension then the section in the z-y plane has been taken along the center-line, but
if this section is a point of symmetry we have taken a slice 25 displacement thickness
off the axis. The z-y sections have been plotted as absolute values at appropriéte
distances downstream. The absolute values are more meaningful here because the
picture is not confused by the phase properties that will change over small distances

downstream. The horizontal cut has been taken roughly where the perturbations are
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largest. Contours are again drawn at decade levels in thick lines and light lines at the
square root of 10. The lowest contour is at 0.001 of the free-stream. It turns out that
a v excitation creates velocity disturbances downstream that are roughly ten times as
large as the values produced by either a u or a w wall perturbation. For this reason it
has been necessary to include a decade smaller contour level on figures 3.1.1(i, ii, iii)
and 3.1.3(i, ii, iii) that define the velocities created by u and w excitation respectively.
In general the contour plots show that the disturbances establish a clear pattern of
propagating waves after about 100 displacements thickness downstream. All the dis-
turbances spread out in width downstream at the same rate. A small clearly defined
region around the source indicates the upstream extent of the near field. It might
be expected that the stream wise vorticity is effectively created by a spanwise wall
excitation, w , but it turns out that a normal velocity component excitation is not
only more effective in creating velocity fluctuations but as a consequence also creates

larger streaming vorticity.

3.2 Influence of Frequency

Although all the physical quantities described in the previous section could be dis-
played for the three forms of excitation we have here concentrated on the u per-
turbations created by a normal boundary excitation as this seems to be the most
important case. Calculations similar to those of section 3.1 have been carried out at
a fixed Reynolds number of 1000 and at zero pressure gradient for different Fnum-
bers. The patterns shown in figures 3.2(i - vi) are perhaps just what one might expect
and mainly reflect the different amplification rates as the frequency is changed. The
lowest Fnumber of 25 x 1078 lies below the lower branch of the neutral loop and so
the two-dimensional modes are damped and the patterns plotted on figure 3.2 (i) are
dominated by oblique waves that become more important in these circumstances. At
frequencies that contain modes above the upper branch everything is again damped

and at some distance downstream the disturbances vanish. Apart from the lowest
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frequency the solutions upstream of the source are quite similar to one another, but

at the low frequency it appears that the near-field zone is enlarged.

3.3 Influence of Pressure Gradient

A set of computations was carried out for an Fnumber of 100 x 107% and a Reynolds
number of 1000 over a range of Falkner-Skan similarity parameter values. The im-
posed pressure gradient mainly influences the pattern through the amplification rates
that are obtained under the different rates of acceleration. The data is displayed on
figure 3.3 (i) to 3.3 (v). What is particularly striking in this set is the close similarity

of the solution for all pressure gradients in the region just upstream of the source.

3.4 Influence of Reynolds number

In this part of the investigation the pressure gradient was set to zero and the Fnumbers
and Reynolds number varied so that the real frequency, the product of the Reynolds
number and the Fnumber was kept constant. The idea behind this was to maintain
a roughly constant wavenumber. The patterns shown on figures 3.4( i - v), especially
for the z-y cut are all quite similar apart from the obvious effects arising from the
variation in amplification rates. Again it appears that the near-field zone in front of

the source is unchanged by Reynolds number.

4 Asymptotic Solutions

The previous plots indicated that apart from the region upstream of the source and
roughly 50 - 100 displacements thicknesses downstream the responses arise purely
from the dominant eigenmodes at each spanwise wavenumber Fourier transformed
w.r.t. the z coordinate. Since in the calculation scheme the eigensolutions are sep-
arated out from the full numerical Fourier transform in the asymptotic part can be
viewed by itself. This is a much simpler and quicker computation. The streamwise

perturbation response to the two boundary values in and v are shown on figures 4.0
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(i - ii). These figures may be directly compared with the full solutions on 3.1.2 with
identical scalings. The solutions over the downstream zones are well modeled by the
asymptotic forms. The u excitation converges to the full solution more rapidly than
the flow generated by the v excitation. This is because the v excitation creates a
simple potential, or acoustic, near field in addition to the viscous field and the eigen-
solution common to both. The interference between the algebraic potential solution
and the wavy eigensolution gives rise to the rather irregular behavior seen in the z-y

plots on figures 4.0(i) and 4.0(ii) for the two excitations respectively.

5 Receptivity

The asymptotic response is dependent on the receptivity at the source as well as the
amplified eigenstructure for that particular mode. There are of course a multitude
of possible choices for defining receptivity, but it seems to be sensible to take an
integration through the boundary layer to act as a guide to the degree of activity
excited. Here we have taken the root of the integral of the square of the flow quantity

in question across the boundary layer.

5.1 Raw Receptivity

The receptivities of individual modes provide some guidance as to how the different
flow parameters are excited by the three possible boundary values. The receptivity of
a flat plate boundary layer at a Reynolds number of 1000 to the three wall excitations
are shown on the composite plots 5.1.1, 5.1.2 and 5.1.3. The six plots on each figure
show the receptivity as a function of Fnumber and spanwise wavenumber for the
various velocity and vorticity components. The neutral loop is also draw to show
the region where the value of receptivities important. In some cases the value of the
receptivity coefficient increases alarmingly with wavenumber or frequency, but this
occurs over regions of the plane that are linked to highly damped eigenvalues that

do not contribute to the true asymptotic behavior that is dominated by the region of
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maximum amplification. These figures clearly show that the excitation by a normal
jet is much more effective than of a tangential one. It is also clear that the largest

perturbation velocity is that in the direction of the mean stream.

5.2 Effect of Reynolds number

The receptivity has been evaluated for the u flow field excited by a normal jet for a
range of Reynolds numbers at zero pressure gradient, as this appears to be the most
important case. The results are shown on figure 5.2 together with the appropriate
neutral loop. Although the neutral loop moves as the Reynolds number is changed it
would appear that the receptivity coefficients themselves do not change significantly
over this range of Reynolds number. The far downstream asymptotic behavior con-
tains the exponentially growing modes of the dominate unstable mode. The relatively
weak algebraic influence of the raw receptivity coefficients has, therefore little effect

on the amplitude that is dominated by the exponential factors.

5.3 Effect of Pressure Gradient

The Effect of varying the pressure gradient at constant Reynolds number is shown on
figure 5.3. Again this set of plots indicates that receptivity in not greatly affected by

changes in pressure gradient.

6 Excitation by a Periodic Bump

Small oscillating bumps have also been used to generate disturbances in boundary
layers. Provided the bump is shallow the expression in equations (5) and (6) can
be used to model the boundary values. Both a normal and a tangential excitation
are therefore generated. From the studies of the inclined jets that also introduced
an additional boundary value in terms of u it might be anticipated that this term
contributes only weakly to the overall solution. But it turned out that the mean

flow velocity gradient OU/dy at the wall is numerically quite large and therefore both
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boundary values contribute similarly to the overall downstream solution (see figure
21). In fact the two terms produce partial solutions that are of similar form but
of opposite sign so that the overall perturbation created is often weaker than that
produced solely by the normal component. A previous experimental investigation
using a 2mm pin oscillating through a hole in the insert disk determined detailed
measurements of the downstream flow created. It turned out that only quite small
amplitudes could be excited if a linear response was to be maintained. The low signal
levels created were far more difficult to measure accurately than those generated by
an oscillating jet. Nevertheless, some comparisons were made with the theoretical
predictions using the linear theory. The predictions were not well reflected by the
measurements. At the time this was attributed to difficulties in accurately measuring
the pin position and amplitude. After the wind tunnel was moved to Queen Mary
College from Cambridge another attempt was made on these measurements. Using
much improved measuring instruments and a better control of the flow speed etc. fresh
data was collected. Again it has to be reported that the measurements did not match
the predictions. These measurements were taken with great care and they indicated
that the simple theory was, for some reason, wanting. It has now been established that
the linearization of the boundary conditions is only valid for very small amplitudes of
the pin. In the experiment this restricted the true linear behavior to amplitude of less
than 10 microns. The signals are then very hard to measure. It would appear that for
the typical amplitude being used of 50 microns the next term in the expansion for the
boundary values is needed. A weakly nonlinear theory can then be established. This
part of the work has not yet been completed, but work is still in progress. However,
some measurements taken far downstream of an oscillating pin did show a much
weaker disturbance level than for the oscillating jet of similar magnitude. Although
the linear theory is inadequate for a complete description of the solution we show
here a linear modeling of a particular case. Figure 6.0 contains the contour plots

of the modulus of the disturbance downstream for the two boundary values. In this
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situation, which was chosen especially to illustrate the behavior, the two flow patterns
are almost identical. They are also correctly phased to cancel on another, as shown
in the composite contour plot. Linear contour levels have been used here to illustrate
the behavior more clearly. Other excitation frequencies or Reynolds numbers would
create a different patterns with different degrees of cancellation, but clearly there are

scenarios that provide for almost perfect annihilation of the asymptotic solution.

7 Nonlinear Effects

Some measurements have been made with excitations that are larger that the levels
required for linear response. Three excitation levels were used and the spanwise
traverses recorded at 100mm downstream from the source. Figure 7.0.1 shows these
contour plots obtained with exit jet velocities of 0.10, 0.27 and 0.93 m/s respectively
through a 2mm hole. For comparison, DNS results are shown in figure 29. The
contours are plotted at amplitudes of steps square root of 10. The lowest contour
level is at 0.001%. The plots for the two smallest excitation amplitudes are reasonably
similar to one another while the highest level shows some differences. These types
of measurement take a considerable amount of wind tunnel time. So in order to
explore a wider range of examples only the central zone of the spanwise traverse was
measured at rather coarse steps. The data was then integrated to give a measure of
the integrated r.m.s. level. It was found that the restricted zone provided a level equal
to over 90% of the value over the while zone. The increased speed of data collection
enabled measurements to be made over a range of amplitudes and frequencies for the
three excitation holes of 1mm, 2mm and 4mm diameter. Here only the data at 96
Hz will be shown as the other frequencies follow a similar behavior pattern. Figure
7.0.2 shows the integrated r.m.s. levels of the fundamental from the three jets over
a range of mass flows. The mass flows are normalized by the free-stream velocity
and the jet size in displacement thickness units. The summed data is normalized

by the rms intensity as a percentage of the free-stream velocity over an area defined
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in terms of the local displacement thickness. The records from the 2mm jet are the
most complete and show the breakaway from the linear behavior and the subsequent
increase in perturbation amplitudes with excitation level.  The response is linear up
to a mass flow of around 0.02 while the 1mm jet shows a break away at roughly half
this level. Unfortunately there are no large amplitude cases for the 4mm jet. The
behavior of the nonlinear component follows a cubic curve very closely for the 2mm
case. A plot of the first harmonic component is shown on figure 7.0.3. Here the
nonlinear behavior follows an expected quadratic for at low level of excitation and

this blend in to a sixth order curve.

8 DNS Results

Using the immersed boundary technique described above, the velocity fields created
by several types of actuators were computed. The examples given illustrate the ability
of the immersed boundary technique to model the motion of flow control actuators
which would otherwise be quite difficult and/or inefficient to carry out using standard
methods. Here, a cartesian grid is selected at the beginning and does not change
during the course of the calculation. The actuator surface, however, moves through
the underlying cartesian grid. Again, the surface of the body is not required to
intersect the underlying grid points, and arbitrarily shaped bodies can be modeled.
The first example of a flow control actuator is that of the vibrating ribbon. Fol-
lowing the development of the linear stability theory by Tollmien and Schlichting,
experimental investigations were carried out to test the theory. Many of these origi-
nal experiments, beginning in the early 1940’s with those of Shubauer and Skramstad
(1943), made use of a vibrating ribbon to excite 2-D boundary-layer oscillations. The
ribbon was held under tension across the span of a flat plate, and made to oscillate by
running an AC current through the ribbon which was immersed in a magnetic field.
This technique was found to be capable of producing the desired 2-D boundary-layer

disturbances.
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A numerical simulation of a vibrating ribbon is described in this section. The rib-
bon motion is sinusoidal, and moves perpendicularly to the oncoming boundary layer.
Dimensionally, the computational ribbon is 20 mm long (about 1/4 of a T-S wave-
length), and is placed at approximately 0.0566 from the wall. All other parameters

are as follows:

Uwo = 3.0m/s
v = 15x107° m?/s
L = 0.5m
z; = 0.9 (R = 516)
Ty = 3.3 (Rs =989)
f* = 143 Hz

where z, is the inflow location, z, the outflow, and f the frequency of the vibrating
ribbon. The near field disturbance caused by the ribbon is shown in figure 12 after
a quasi-steady state has been reached. The flow field appears as one would expect:
as the ribbon moves upward (downward), fluid moves inward (outward), under the
ribbon; at the top or bottom of the ribbon stroke, a low Reynolds number flow regime
exists. Streamwise velocity profiles corresponding to figure 12 are provided in figure 13
to show more detail.

The global behavior of the disturbance created by the ribbon can also be com-
puted. As seen in figures 14 and 15, the frequency of the ribbon is such that ampli-
fying waves are produced over a particular range of downstream Reynolds numbers.
The disturbance distributions in the wall normal direction shown in figure 16 again
compare well with linear stability theory.

The second example is that of a wall-mounted actuators. The actuator is described
by

A
y(x’ t) = '2_

(1 — cos(2m ft + ¢)) cos® (ﬂ—(%—xc—)—> |z — 2| > w/2 (81)
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where 1z, is the coordinate of the center of the actuator, and w is the total width of
the actuator. This shape is shown graphically in figure 17..

The actuator is again modeled using the volume forcing technique. The spanwise
disturbance-vorticity created by the sinusoidal movement of the wall mounted actu-
ator is shown in figure 18. Shown is a time history of the actuator movement, the
actuator at mid-stroke moving upward, the actuator at top stroke and stationary, and
finally at mid-stroke moving downward. The global disturbance velocity produced by
this motion is shown in figures 19 and 20. As expected, unétable T-S waves are
produced which grow exponentially as they are convected downstream.

Results for a three-dimensional piston-type actuator are shown in figures 21 through
27. The piston is embedded in a flat plate over which a zero pressure gradient bound-
ary layer has formed. Figures 21 through 24 depict the velocity field produced by
a stationary piston actuator. In figure 21, we plot the streamwise velocity profiles
caused by the presence of the actuator, and in the remaining figures, the disturbance
velocity fields induced. Results for a sinusoidally moving piston actuator are shown
in figures 25 and 26.

The final actuator investigated was a blowing and suction type actuator and was
used as a validation case for the theoretical and experimental work discussed in the
rest of this report. Physically, this actuator is realized by drilling a hole into the
working surface, and placing a loudspeaker, for example, behind the surface to induce
mass flow in and out of the hole. Numerically, this is the simplest actuator to model
as it can be represented simply by applying a non-zero wall velocity disturbance.

Figure 27 shows the instantaneous streamwise disturbance velocity created by the
blowing and suction hole. A characteristic bow-like structure can be seen as the
disturbance is convected downstream. For this case, slices of data from the DNS
are taken in the z-y and z-y planes and compared with results predicted from the
theoretical analysis and from experimental data. The results, shown in figure 28,

are in very good agreement, implying that the theoretical model is quite capable of
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predicting the flow behavior in both the near and far field of the actuator.

9 Discussion

A linear theory for the disturbances created by wall boundary values has been estab-
lished. Predictions based on this model have been shown to agree with remarkable
detail to a series of measurements from a normal jet. Not only do the contour levels
coincide with incredible accuracy, but many of the details of the contours match.
Although the confirmation of theory has only been carried out for the case of the
normal velocity boundary value and the resulting streamwise disturbance in a zero
pressure gradient flow at one Reynolds number there is no reason to suppose that the
model does not lend itself to cover other physical situations. The only disagreement
appear in matching the phase downstream. This may well be associated with the fact
that the theoretical model is for a purely parallel flow, whereas the real flow develops
in thickness downstream. The 6 disturbance functions created by the three boundary
values are shown for one flow condition. One can see that the patterns have some sim-
ilarities with one another basically when the resultant is an odd or an even function of
the spanwise co-ordinate. The normal velocity component creates disturbances in the
flow roughly 10 times larger than that created by either of the other two boundary
conditions. The effect of varying the Reynolds numbers, Fnumbers and the pressure
gradient are explored for the most important case of a normal velocity excitation on a
streamwise velocity disturbance component. The patterns of the contours shown fol-
low roughly what one might expect in so far as the downstream flow is dominated by
the amplification rates of the dominate modes. The disturbed zone around the source
seems to be remarkably insensitive to the both the imposed pressure gradient and the
Reynolds number. But the frequency of excitation does have some influence on the
near field, especially at the lowest frequencies where the disturbed region is enlarged.
Estimates of the disturbance based solely on the asymptotic eigen- solutions are very

similar to those of the full calculation, particularly at distances greater than about 100




37

displacements thicknesses downstream. The rather unexpected interference patterns
seen about 30 - 50 displacement thicknesses downstream, therefore, arise from the
interaction between the oblique modes and are not, as one might suppose, from the
near field. In most situations it would be sufficient to use the very much cheaper and
quicker solutions based on asymptotic behavior. The receptivities of the disturbance
quantities to the three boundary values have been calculated. Again it is clear that
the normal boundary value component produces the largest disturbances. The plots
of receptivity coefficient on the excitation frequency- wavenumber plots show that
the actual values change only weakly with Reynolds number or Pressure gradient.
There are some weak effects, but we are generally concerned with large amplitude
downstream arising from the cumulative amplifications. Estimates of transition po-
sition by the n-factor method relies on the fact the receptivity is roughly a constant
function of the Reynolds number and pressure gradient. Receptivity certainly plays a
very important role in transition, but it appears that the environmental factors can be
lumped together in an empirical way because of this insensitivity. Oscillating bumps
can only be modeled by the linear boundary condition for very small amplitudes. A
weakly nonlinear theoretical approach is being developed to cover larger amplitudes
of pin movement. But from some brief experiments that are not reported here it was
found that the bump produced much weaker downstream disturbances than would
have been expected from the normal jet-like excitation component alone. This turns
out to arise because the two parts of the exaction are of opposite sign and can cancel
downstream This has been illustrated by a linear calculation for one particular set
of parameters. But the result should provide a warning to those using this form of
excitation. The nonlinear experiments that show a cubic form for the development
of the fundamental with excitation level. This could be a weakly nonlinear amplifica-
tion taking place that does lead to a cubic behavior, but the amplitudes in the main
body of the solution are too small for this behavior. However, the region close to the

source does includes regions of the flow with very large disturbances. It seems likely,
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therefore, that the observations arise from a nonlinear receptivity mechanism. This

could also be expected to follow a cubic form although the theory for this has yet to

be formulated.

10

11

Conclusions

A linear theory has been developed to describe the disturbances from various

forms of point excitation on the boundary wall.

Experimental validation for zero pressure gradient and one Reynolds number

has been very satisfactory.

The theory has been used to explore the effect of excitation frequency, Reynolds

number and pressure gradient.

The receptivities, based on the eigenmodes, have been obtained for a variety of

flow conditions.

It has been shown that an oscillating bump produces two downstream flow fields

that can cancel and generate a very weak response.

. Direct Numerical Simulations have been performed. The calculations agree well

with both the theoretical predictions as well as the experimental results. Ad-
ditionally, an immersed boundary technique has been developed and validated.
The technique was used to predict the flow field created by actuators of various

geometries.

Figures
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Figure 2: A flat plate immersed in a rectangular computational domain.
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Figure 3: Comparison of u-velocity boundary layers at several downstream locations:
z = 1.213 (Rs, = 600) (o), = = 2.158 (Rs, = 800) (o), and z = 3.375 (Rs, = 1000)
(%). Symbols indicate values computed using a virtual wall located at y = 0.
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Figure 4: Zoom-in comparison of u-velocity boundary layers at several downstream
locations: z = 1.213 (Rs, = 600) (o), = = 2.158 (Rs = 800) (¢), and z = 3.375
(Rs, = 1000) (x). Symbols indicate values computed using a virtual wall located at
y=0.
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Figure 5: Comparison of v-velocity boundary layers at several downstream locations:
z = 1.213 (R, = 600) (o), z = 2.158 (R;, = 800) (o), and z = 3.375 (Rs, = 1000)
(x). Symbols indicate values computed using a virtual wall located at y = 0.
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Figure 6: Zoom-in comparison of v-velocity boundary layers at several downstream
locations: z = 1.213 (R, = 600) (o), z = 2.158 (Rs, = 800) (o), and z = 3.375
(Rs, = 1000) (*). Symbols indicate values computed using a virtual wall located at

y=0.




49

............... e 1 ............ PRI SURRPRRPRY. e
" <223E-2° A

e

Ln(A/A))

~05 600 700 800 900 1000

Figure 7: Comparison of growth rates of 2-D TS-waves over a virtual wall at y = 0
for various CFL numbers (- - —), compared with a standard DNS (- - -), and with

LST (—). Note: CFL=CAt/Az, and Az is held constant.
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Figure 8: Comparison of u-velocity eigenfunctions at several downstream locations:
z = 1.213 (Rs, = 600) (o), z = 2.158 (Rs, = 800) (¢), and = = 3.375 (Rs, = 1000)
(x). Symbols indicate values computed using a virtual wall located at y = 0.




43

1‘5x10
1 ......................................................................
>
0.5 e ................ ............... e d
soe0esy
8 g 0O %00qnd
-5 -2.5

Figure 9: Zoom-in comparison of u-velocity eigenfunctions at several downstream
locations: z = 1.213 (Rs, = 600) (o), z = 2.158 (Rs, = 800) (o), and z = 3.375
(Rs, = 1000) (*). Symbols indicate values computed using a virtual wall located at
y=0.

Figure 10: Comparison of v-velocity eigenfunctions at several downstream locations:
z = 1.213 (Rs, = 600) (o), z = 2.158 (R; = 800) (o), and z = 3.375 (Rs, = 1000)
(). Symbols indicate values computed using a virtual wall located at y = 0.
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Figure 11: Zoom-in comparison of v-velocity eigenfunctions at several downstream
locations: z = 1.213 (Rs, = 600) (o), z = 2.158 (Rs, = 800) (o), and z = 3.375
(Rs, = 1000) (%). Symbols indicate values computed using a virtual wall located at
y=0.
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Figure 13: Streamwise velocity profiles ur near the leading edge of the ribbon (upper
graph) and the trailing edge (lower graph).
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Figure 14: Streamwise disturbance velocity u(z,y) produced by a vibrating ribbon.

Uy = 3.0 m/s, v =15 x 1075, Rey, = 10°, F = 150 x 107 or f' = 14.3 Hz.
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Figure 15: Wall normal disturbance velocity v(z,y) produced by a vibrating ribbon.

Uy = 3.0m/s, v=15x1075, Rey = 10°, F = 150 X 10~% or f' = 14.3 Hz.
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Figure 16: Wall normal v (upper graph) and streamwise u (lower graph) disturbance
velocity. Navier-Stokes solution (fundamental) with volume forcing to simulate a
vibrating ribbon, o, compared with Orr-Sommerfeld solution, —. U, = 3.0 m/s,
y=15x10"5 Re, =105, F =150 x 108 or f' =143 Hz or w = w8 — (.099735,
Rs, = 666.0, o = o/6; = (0.266399, —0.002955).
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Figure 17: Envelope of wall mounted actuator movement. Curve is given by equa-
tion (81).




50

0L

€OLe

top stroke, stationary

Ol

half stroke, moving downward

Figure 18: Disturbance vorticity created by the sinusoidal movement of a wall
mounted actuator. Actuator height is 5.6% of boundary layer thickness d.
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Figure 19: Streamwise disturbance velocity u(z,y) produced by a wall mounted actu-
ator. Actuator described by equation (81). Uy = 3.0 m/s, v = 1.5 107%, Rey, = 10°,
F =150 x 1075 or f' = 14.3 Hz.
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Figure 20: Wall normal disturbance velocity v(z,y) produced by a wall mounted
actuator. Actuator described by equation (81). Uy, = 3.0 m/s, v = 1.5 X 1075,
Re;, = 105, F =150 x 107% or f' = 14.3 Hz.
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Figure 21: U-velocity profiles at z = 0 in vicinity of stationary piston.

Figure 22: Contours of constant u-disturbance velocity, u/Us %, at z = 0 created
by a stationary piston actuator.
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Figure 23: Contours of constant u-disturbance velocity, u/Us %, in plane y = 22 ym
created by a stationary piston actuator.

Figure 24: Contours of constant u-disturbance velocity, u/Us %, in plane z = 500mm
created by a stationary piston actuator.
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Figure 26: Contours of constant u-disturbance velocity in z-z created by the sinusoidal
motion of a piston actuator.
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Figure 27: Streamwise disturbance velocity u(z, 2) in the z-z plane at y = 1.49 mm
(35 % of boundary layer thickness at source) created by an oscillating jet normal to
the surface.
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